The Ginzburg–Landau equation III. Vortex dynamics
نویسندگان
چکیده
In this paper we study the time-dependent Ginzburg–Landau equation of the Schrödinger type in two dimensions. The initial conditions are chosen to describe several well-separated vortices. Our task is to understand the vortex structure of the corresponding solutions as well as corrections due to radiation. To this end we develop the nonlinear adiabatic theory. Using the methods of effective action and of geometric solvability we derive equations for the vortex dynamics and radiation. As an example we consider the special case of radiation by two 1-vortices. AMS classification scheme numbers: 35Q55, 70K99
منابع مشابه
Exact solutions of the 2D Ginzburg-Landau equation by the first integral method
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
متن کاملGinzburg-Landau vortex dynamics with pinning and strong applied currents
We study a mixed heat and Schrödinger Ginzburg-Landau evolution equation on a bounded two-dimensional domain with an electric current applied on the boundary and a pinning potential term. This is meant to model a superconductor subjected to an applied electric current and electromagnetic field and containing impurities. Such a current is expected to set the vortices in motion, while the pinning...
متن کاملVortex motion in the spatially inhomogeneous conservative Ginzburg - Landau model
Using the method of matched asymptotic expansion we construct the mobifity relation describing the vortex dynamics in the conservative Ginzburg-Landau equation with a spatially varying supercriticality parameter. For a particular case of a circularly symmetric supercriticality profile, we present the equations of vortex dynamics in a Hamiltonian form, and demonstrate the dynamic confinement of ...
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملA Model for Vortex Nucleation in the Ginzburg-Landau Equations
This paper studies questions related to the dynamic transition between local and global minimizers in the Ginzburg-Landau theory of superconductivity. We derive a heuristic equation governing the dynamics of vortices that are close to the boundary, and of dipoles with small inter vortex separation. We consider a small random perturbation of this equation, and study the asymptotic regime under w...
متن کامل